信号处理原理 笔记 3

信号的分解

信号的分解方法

直流与交流分解

fDC(t)=limTT/2T/2f(t)dtfAC(t)=f(t)fDC(t)\begin{align*} f_{DC}(t) &= \lim\limits_{T\to\infty}\int_{-T/2}^{T/2}f(t)dt \\ f_{AC}(t) &= f(t) - f_{DC}(t) \end{align*}

奇偶分解

fe(t)=f(t)+f(t)2fo(t)=f(t)f(t)2\begin{align*} f_{e}(t) &= \frac{f(t) + f(-t)}{2} \\ f_{o}(t) &= \frac{f(t) - f(-t)}{2} \end{align*}

复分解

Re(f(t))=f(t)+f(t)2Im(f(t))=f(t)f(t)2j\begin{align*} \mathrm{Re}(f(t)) &= \frac{f(t) + \overline{f(t)}}{2} \\ \mathrm{Im}(f(t)) &= \frac{f(t) - \overline{f(t)}}{2j} \end{align*}

脉冲分解

TODO

信号的正交分解

f(t)f(t)[t1,t2][t_{1}, t_{2}]区间内具有连续一阶导数和逐段连续的二阶导数时,f(t)f(t)可以用完备的正交函数集{φi(t)}\{\varphi_{i}(t)\}来表示,即:

f(t)=i=1ciφi(t)f(t) = \sum\limits_{i=1}^{\infty}c_{i}\varphi_{i}(t)

定义ki=φi(t),φi(t)k_{i} = \langle\varphi_{i}(t), \varphi_{i}(t)\rangle

则常数cic_{i}的定义为:

ci=1kif(t),φi(t) c_{i} = \frac{1}{k_{i}}\langle f(t), \varphi_{i}(t)\rangle

我们有帕斯瓦尔定理:

t1t2f(t)2dt=i=1ci2ki\int_{t_{1}}^{t_{2}}||f(t)||^{2}dt = \sum\limits_{i=1}^{\infty}||c_{i}||^{2}k_{i}

周期信号的正交分解

满足Dirchlet条件的周期函数都可以在一组完备正交基函数上展开为无穷级数

Dirchlet条件为:

  • 间断点个数有限
  • 极值点个数有限
  • 绝对积分数值有限

当完备正交基函数为三角函数集或指数函数集的时候,展成的级数称为Fourier级数

Fourier级数

三角Fourier

f(t)f(t)周期为T1T_{1},令ω1=2π/T1\omega_{1} = 2\pi/T_{1},则Fourier级数为:

f(t)=a0+n=1(ancosnω1t+bnsinnω1t)f(t) = a_{0} + \sum\limits_{n=1}^{\infty}(a_{n}\cos n\omega_{1}t + b_{n}\sin n\omega_{1}t)

积分变换为:

a0=1T1t0t0+T1f(t)dtan=2T1t0t0+T1f(t)cos(nω1t)dtbn=2T1t0t0+T1f(t)sin(nω1t)dt\begin{align*} a_{0} &= \frac{1}{T_{1}}\int_{t_{0}}^{t_{0} + T_{1}}f(t)dt \\ a_{n} &= \frac{2}{T_{1}}\int_{t_{0}}^{t_{0} + T_{1}}f(t)\cos(n\omega_{1}t)dt \\ b_{n} &= \frac{2}{T_{1}}\int_{t_{0}}^{t_{0} + T_{1}}f(t)\sin(n\omega_{1}t)dt \end{align*}

复指数Fourier

对三角Fouier利用欧拉函数进行转换,可以得到复指数形式的Fourier级数:

f(t)=a0+n=1[anjbn2ejnω1t+an+jbn2ejnω1t]f(t) = a_{0} + \sum\limits_{n=1}^{\infty}\bigl[ \frac{a_{n}-jb_{n}}{2}e^{jn\omega_{1}t} + \frac{a_{n}+jb_{n}}{2}e^{-jn\omega_{1}t} \bigr]

定义:

Fn={a0n=0F(nω1)=anjbn2nZ/{0}F_{n} = \begin{cases} a_{0} & n = 0\\ F(n\omega_{1}) = \dfrac{a_{n} - jb_{n}}{2} & n \in \mathbb{Z}/\{0\} \end{cases}

则有:

f(t)=n=Fnejnω1tf(t) = \sum\limits_{n = -\infty}^{\infty}F_{n}e^{jn\omega_{1}t}

其中:

Fn=1T1T1f(t)ejnω1tdtF_{n} = \frac{1}{T_{1}}\int_{T_{1}}f(t)e^{-jn\omega_{1}t}dt

Fouier频谱

考虑Fouier复系数{Fn}\{F_{n}\},则为了表示这个复系数序列可以得到两张频谱:

  • 幅度谱 Fn|F_{n}|
  • 相位谱 Arg(Fn)\mathrm{Arg}(F_{n})

周期信号的Fouier频谱特点为:

  1. 仅在离散点n=kω1n = k\omega_{1}处有值,为谐波
  2. FnF_{n}是双边谱,也即正负频率的频率幅度相加才是实际幅度
  3. 信号的功率为n=Fn2\sum\limits_{n=-\infty}^{\infty}|F_{n}|^{2}

周期矩形脉冲信号

脉宽为τ\tau,幅度为EE,周期为T1T_{1}

周期矩形脉冲信号的FS
周期矩形脉冲信号的FS

包络线为EτT1Sa(ωτ2)\dfrac{E\tau}{T_{1}}Sa(\dfrac{\omega\tau}{2})

可以看出,周期信号的能量主要集中在第一个零点以内,即ω2πτ|\omega| \leq \dfrac{2\pi}{\tau}内,因此这段频率范围被称为矩形信号的频带宽度,在允许失真的情况下可以只用这一段进行通信

信号的正交分解

信号的级数展开

用一组函数φi(t)\varphi_{i}(t)将信号x(t)L2(R)x(t)\in L^{2}(R)展开成级数:

x(t)=i=ciφi(t)x(t) = \sum\limits_{i=-\infty}^{\infty}c_{i}\varphi_{i}(t)

求出cic_{i}的过程称为信号变换

正交变换

若基函数φi(t)\varphi_{i}(t)标准完备正交基,则积分变换为:

ci=t1t2x(t)φi(t)dtc_{i} = \int_{t_{1}}^{t_{2}}x(t)\overline{\varphi_{i}(t)}dt

称为x(t)x(t)的正交变换,亦称为Karhunen-Loeve变换

非周期信号的Fouier变换

非周期信号可以看成TT\to\infty的周期信号,于是其频谱会变化为连续频谱,也即ω10Fn0\omega_{1}\to 0\quad F_{n}\to 0

我们将非周期信号的FT定义为:

F(ω)=Rf(t)ejωtdtF(\omega) = \int_{\mathbb{R}}f(t)e^{-j\omega t}dt

逆Fourier变换定义为IFT:

f(t)=12πRF(ω)ejωtdωf(t) = \frac{1}{2\pi}\int_{\mathbb{R}}F(\omega)e^{j\omega t}d\omega

上式可写成,F(ω)=F(ω)ejφ(ω)F(\omega) = |F(\omega)|e^{j\varphi(\omega)},其中F(ω)|F(\omega)|幅度频谱密度函数φ(ω)\varphi(\omega)为相位频谱密度函数

FT性质

唯一性:FT与IFT可以分别确定唯一的函数

可逆性:

F[f(t)]=F(ω)F1[F(ω)]=f(t)\mathscr{F}[f(t)] = F(\omega) \Leftrightarrow \mathscr{F}^{-1}[F(\omega)] = f(t)

FT与FS的关系

将非周期信号f(t)f(t)做周期延拓,即时移并叠加,可得到一个周期信号f~(t)\tilde{f}(t),令其周期为T1T_{1},则我们有:

Fn=1T1T1/2T1/2f~(t)ejnω1tdt=1T1Rf(t)ejnω1tdtF(ω)=Rf(t)ejωtdt\begin{align*} F_{n} &= \frac{1}{T_{1}}\int_{-T_{1}/2}^{T_{1}/2}\tilde{f}(t)e^{-jn\omega_{1}t}dt \\ &= \frac{1}{T_{1}}\int_{\mathbb{R}}f(t)e^{-jn\omega_{1}t}dt \\ F(\omega) &= \int_{\mathbb{R}}f(t)e^{-j\omega t}dt \end{align*}

于是可以得到:

Fn=1T1F(nω1)F_{n} = \frac{1}{T_{1}}F(n\omega_{1})

这代表着我们可以从波形图上较为简单的在周期信号的FS与非周期信号的FT之间进行计算

  • 周期信号至非周期信号:连接包络线,之后整体扩展T1T_{1}
  • 非周期信号至周期信号:离散化,只取nω1n\omega_{1}处的点,并缩小1T1\frac{1}{T_{1}}

典型信号的FT

矩形脉冲信号

信号为:

f(t)=EGτ(t)f(t) = EG_{\tau}(t)

其FT为:

F(ω)=EτSa(τ2ω)F(\omega) = E\tau\cdot Sa(\frac{\tau}{2}\omega)

冲激信号

F[Eδ(t)]=REδ(t)ejωtdt=E\mathscr{F}[E\delta(t)] = \int_{\mathbb{R}}E\delta(t)e^{-j\omega t}dt = E

也即频谱为常数,被称为白色谱

三角信号

F[cosω0t]=F[ejω0t+ejω0t2]=πδ(ωω0)+πδ(ω+ω0)\begin{align*} \mathscr{F}[\cos \omega_{0}t] &= \mathscr{F}[\frac{e^{j\omega_{0}t} + e^{-j\omega_{0}t}}{2}] \\ &= \pi\delta(\omega - \omega_{0}) + \pi\delta(\omega + \omega_{0}) \end{align*}

一些性质

常数的频谱

F[ejω0t]=2πδ(ωω0)F[12π]=δ(ω)\begin{align*} \mathscr{F}[e^{j\omega_{0}t}] &= 2\pi\delta(\omega - \omega_{0}) \\ \mathscr{F}[\frac{1}{2\pi}] &= \delta(\omega) \end{align*}

证明的关键点为:

F1(δ(ω))=12πRδ(ω)ejωtdω=12π\mathscr{F}^{-1}(\delta(\omega)) = \frac{1}{2\pi}\int_{\mathbb{R}}\delta(\omega)e^{j\omega t}d\omega = \frac{1}{2\pi}

线性

F\mathscr{F}是线性运算

反褶与共轭

F(f(t))=F(ω)F(f(t))=F(ω)F(f(t))=F(ω)\begin{align*} \mathscr{F}(f(-t)) &= F(-\omega) \\ \mathscr{F}(f^{*}(t)) &= F^{*}(-\omega) \\ \mathscr{F}(f^{*}(-t)) &= F^{*}(\omega) \end{align*}

对偶性

F1[F(ω)]=12πFω[F(ω)]\mathscr{F}^{-1}[F(\omega)] = \frac{1}{2\pi}\mathscr{F}_{\omega}^{*}[F^{*}(\omega)]

而FT和IFT的对偶性可以表示为:

F(t)2πf(ω)F(t) \Leftrightarrow 2\pi f(-\omega)

尺度变换特性

F[f(at)]=1aF(ωa)\mathscr{F}[f(at)] = \frac{1}{|a|}F(\frac{\omega}{a})

等效性

对任意信号f(t)F(ω)f(t)\Leftrightarrow F(\omega),设f(0)f(0)F(0)F(0)分别为最大值,则可定义:

  • 等效脉宽τ=F(0)/f(0)\tau = F(0) / f(0)
  • 等效带宽Bf=f(0)/F(0)B_{f} = f(0) / F(0)

波形运算特性

F[f(tt0)]=F(ω)ejωt0F[f(att0)]=1aF(ωa)ejωt0aF[f(t)ejω0t]=F(ωω0)F[1af(ta)ejω0at]=F(aωω0)\begin{align*} \mathscr{F}[f(t-t_{0})] &= F(\omega)e^{-j\omega t_{0}} \\ \mathscr{F}[f(at-t_{0})] &= \frac{1}{|a|}F(\frac{\omega}{a})e^{-j\omega \frac{t_{0}}{a}} \\ \mathscr{F}[f(t)e^{j\omega_{0}t}] &= F(\omega - \omega_{0}) \\ \mathscr{F}[\frac{1}{|a|}f(\frac{t}{a})e^{j\frac{\omega_{0}}{a}t}] &= F(a\omega - \omega_{0}) \end{align*}

微积分特性

df(t)dtjωF(ω)dF(ω)sωjtf(t)tf(τ)dτ(jω)1F(ω)+πF(0)δ(ω)ωF(λ)dλπf(0)δ(t)(jt)1f(t)\begin{align*} \frac{df(t)}{dt} &\Leftrightarrow j\omega F(\omega) \\ \frac{dF(\omega)}{s\omega} &\Leftrightarrow -jtf(t) \\ \int_{-\infty}^{t}f(\tau)d\tau &\Leftrightarrow (j\omega)^{-1}F(\omega) + \pi F(0)\delta(\omega) \\ \int_{-\infty}^{\omega}F(\lambda)d\lambda &\Leftrightarrow \pi f(0)\delta(t) - (jt)^{-1}f(t) \end{align*}

卷积特性

F[f1(t)f2(t)]=F[f1(t)]F[f2(t)]F[f1(t)f2(t)]=12πF[f1(t)]F[f2(t)]\begin{align*} \mathscr{F}[f_{1}(t)*f_{2}(t)] &= \mathscr{F}[f_{1}(t)] \cdot \mathscr{F}[f_{2}(t)] \\ \mathscr{F}[f_{1}(t)\cdot f_{2}(t)] &= \frac{1}{2\pi} \mathscr{F}[f_{1}(t)] * \mathscr{F}[f_{2}(t)] \\ \end{align*}