信号处理原理 笔记 1

信号的基本概念

信号的描述

  • 数学描述:
    使用具体的表达式描述为函数

    Sa(t)=sin(t)tSa(t) = \frac{\sin(t)}{t}

  • 波形描述:
    函数图像,横纵坐标要求标出,原点要求标出,零点要求标出

分类:

  • 确定信号与随机信号
  • 周期信号(f(t)=f(t+T)tR)(f(t) = f(t + T) \forall t \in \mathbb{R})与非周期信号

奇异信号举例:

  • 正余弦信号:

    f(t)=Ksin(ωt+θ)f(t)=Kcos(ωt+θ)\begin{align*} f(t) &= K\sin(\omega t + \theta) \\ f(t) &= K\cos(\omega t + \theta) \\ \end{align*}

  • Sa函数:

    Sa(t)=sin(t)tSa(t) = \frac{\sin(t)}{t}

    有结论:

    Sa(t)=π\int_{-\infty}^{\infty}Sa(t) = \pi

  • 指数信号:

    f(t)=Keαtf(t) = Ke^{\alpha t}

欧拉公式

eix=cos(x)+isin(x)sin(x)=eixeix2icos(x)=eix+eix2\begin{align*} e^{ix} &= \cos(x) + i\sin(x) \\ \sin(x) &= \frac{e^{ix} - e^{-ix}}{2i} \\ \cos(x) &= \frac{e^{ix} + e^{-ix}}{2} \end{align*}

用于描述复指数信号:

f(t)=Kest=Ke(σ+jω)t=Keσt(cos(ωt)+jsin(ωt))\begin{align*} f(t) &= Ke^{st} \\ &= Ke^{(\sigma + j\omega)t} \\ &= Ke^{\sigma t}(\cos(\omega t) + j\sin(\omega t)) \end{align*}

函数分解

若非零函数φ1(t)\varphi_{1}(t)φ2(t)\varphi_{2}(t)满足:

t1t2φ1(t)φ2(t)dt=0\int_{t_{1}}^{t_{2}}\varphi_{1}(t)\varphi_{2}^{*}(t)dt = 0

则称其在[t1,t2][t_{1}, t_{2}]上正交

若非零函数序列φ1(t),φ2(t),,φn(t)\varphi_{1}(t), \varphi_{2}(t), \cdots, \varphi_{n}(t)满足:

t1t2φi(t)φj(t)dt={0ijki0i=j\int_{t_{1}}^{t_{2}}\varphi_{i}(t)\varphi_{j}^{*}(t)dt = \begin{cases} 0 & i \neq j \\ k_{i} \neq 0 &i = j \end{cases}

则称这组函数为正交函数集

举例:

  • {cos(kω1t+φk) k=0,1,,n,φ0=0}\{\cos(k\omega_{1}t + \varphi_{k})\ | \,k = 0, 1, \dots, n, \varphi_{0} = 0\},区间[0,2πω1][0, \frac{2\pi}{\omega_{1}}]
  • {ejnω0tn=0,±1,±2,,ωR}\{e^{jn\omega_{0}t}\,|\,n = 0, \plusmn 1, \plusmn 2, \dots, \omega \in \mathbf{R}\},区间[πω0,πω0][-\frac{\pi}{\omega_{0}}, \frac{\pi}{\omega_{0}}]

若在[t1,t2][t_{1}, t_{2}]上,除正交函数集{φi(t)}\{\varphi_{i}(t)\}外,不存在函数x(t)满足:

0<t1t2x(t)x(t)dt<t1t2x(t)φi(t)dt=0i\begin{align*} 0 < &\int_{t_{1}}^{t_{2}}x(t)x^{*}(t)dt < \infty \\ &\int_{t_{1}}^{t_{2}}x(t)\varphi_{i}^{*}(t)dt = 0 \quad \forall i \end{align*}

则称{φi(t)}\{\varphi_{i}(t)\}是完备的